The Sensei Python client API help developers to build a Sensei request object and execute the query.
An example to build request and do the query:
# create a sample sensei request
req = SenseiRequest()
# add paging info;
req.set_count(50) \
.set_offset(0)
# add query info;
req.set_query(SenseiQueryTerm("tags", "automatic"))
# add selection info;
range_selection = SenseiSelectionRange("year", "1995", "2000", True, False) # [1995 TO 2000)
req.append_selection(range_selection)
# add filter info;
req.set_filter(SenseiFilterRange("price", 7900, 11000))
# add group by;
req.set_groupby("category").set_max_per_group(4)
# add sort;
req.append_sort(SenseiSort("color", True))
# add fetch_stored
req.set_fetch_stored(False)
# need explain or not
req.set_explain(False)
# add facets information
facets = SenseiFacets().add_facet("color", False, 1, 10, "hits") \
.add_facet("year")
req.set_facets(facets)
# execute and display results;
proxy = SenseiServiceProxy()
sensei_results = proxy.doQuery(req)
sensei_results.display(["*"], max_col_width=40)
An example to get the stored source data if available:
proxy = SenseiServiceProxy() print proxy.get([1,2]) print proxy.get(['1','2'])
Download
Click this link to download the client file.